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ABSTRACT: We discuss the renormalizability of the noncommutative U(1) Higgs-Kibble
model formulated within the enveloping-algebra approach. We consider both the phase of
the model with unbroken gauge symmetry and the phase with spontaneously broken gauge
symmetry. We show that against all odds the gauge sector of the model is always one-loop
renormalizable at first order in *¥ perhaps, hinting at the existence of a new symmetry of
the gauge sector of the model. However, we also show that the matter sector of the model
is non-renormalizable whatever the phase.
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1. Introduction

At present, there is only one available framework to formulate gauge theories in noncom-
mutative space-time for an arbitrary simple gauge group in an arbitrary representation.
This very framework is the only known formalism where one may have fields with arbitrary
U(1) charge. The formalism we are referring to was introduced in refs. [l f] and [f] and
led to the formulation of the noncommutative standard model [l and some Grand Unifi-
cation models [[]. Some phenomenological implications of these models have been studied
recently [—[L1], but quite a lot of work remains to be done in view of the coming of the
LHC.

As is well known, the Seiberg-Witten map plays a central role in the framework of
refs. [l, B and [{]. Indeed, the noncommutative gauge fields are defined in terms of the
ordinary fields by means of the formal series expansion in powers of the noncommutative
matrix parameter 0¥ that implements the Seiberg-Witten map. The noncommutative
gauge fields do not thus belong, in general, to the Lie algebra of the gauge group but are
valued in the enveloping algebra —this is why the formalism is called the enveloping-algebra
formalism— of that Lie algebra. This is quite at variance with the alternative approach to
model building in noncommutative space-time employed in refs. [[2-[[4] and [L5.

The renormalizability of some noncommutative field theory models constructed within
the enveloping-algebra formalism has been studied in a number of papers: see refs. [LRI].
In all these papers, and throughout this one, it is assumed that both the quantization pro-
cedure and the renormalization program deal with the 1PI functions of the ordinary fields



that define the noncommutative fields via the Seiberg-Witten map. The reader is referred
to ref. RJ] for an alternative interesting proposal. The models whose UV divergences have
been worked out in refs. [[[§—PR1] only have U(1) and/or SU(N) gauge fields and Dirac
fermions in the fundamental representation. It turns out that at first order in 0*¥, and
against all odds, the one-loop UV divergences of the Green functions that only involve
gauge fields in the external legs are renormalizable in the models that have and have not
Dirac fermions. This is quite a surprising result since, as already pointed out in ref. [[7,
BRST invariance on its own cannot account for it, thus hinting at the existence of an as
yet unveiled symmetry of the noncommutative gauge sector of these models. The result in
question is even more surprising if one takes into account that the Green functions that
carry fermion fields in the external legs cannot all be renormalized, thus rendering non-
renormalizable in the enveloping-algebra approach all the noncommutative models studied
so far.

The main purpose of this paper is to see whether the results summarized in the previous
paragraph also hold when the matter fields are not Dirac fermions but scalar fields —let
us recall that the Higgs field is a key ingredient of the Standard Model. The simplest
model that captures some of the features of the noncommutative Standard Model and
includes both gauge fields and scalar fields is the noncommutative U(1) Higgs-Kibble model.
This model has a phase where the U(1) symmetry is spontaneously broken and has also
a phase where the U(1) symmetry is not broken. The renormalization properties of the
noncommutative U(1) Higgs-Kibble model have never been studied when formulated within
the enveloping-algebra formalism, although they have been analyzed within the standard
noncommutative field theory formalism —see ref. [R3] for the U(1) Higgs-Kibble model and
refs. [24-Rg for other models with spontaneous symmetry breaking.

The computation we are about to sketch is quite a daunting one since it demands the
calculation of 94 1PI Feynman diagrams to tell whether the model is renormalizable in
the phase with no symmetry breaking. In this phase, we discuss both the massive and
massless cases. To deal with such a large number of Feynman diagrams we have used the
algebraic manipulation package Mathematica [29]. Then, we shall use the results obtained
in the phase with no symmetry breaking to analyze the renormalizablity of the model in
the phase with spontaneous symmetry breaking.

The layout of this paper is as follows. In section 2, we define the classical noncom-
mutative U(1) Higgs-Kibble model and work out the action up to first order in *”. The
renormalizability of the model in the phase with unbroken gauge symmetry is discussed in
section 3. In section 4, we analyze the renormalizability of the model in the phase with
spontaneous symmetry breaking. A summary of the results obtained in the paper is given
in section 5. The Feynman rules and Feynman diagrams quoted in the paper can be found
in the appendix.

2. The action. The Seiberg-Witten map

As it was stated in the introduction, our noncommutative field theory model will be the
U(1) Higgs-Kibble model. The model contains a noncommutative U(1) gauge field A, and



a noncommutative complex scalar field ® coupled to A,,. The classical action of the model

in terms of the noncommutative fields reads
Sues = [t — 2 FI 1 (D, @) % DI — 1120 5 ® — 2 (B % B)? 2.1
class — x_Z uv X +( u)* — M * _Z( * )7 ()

where

Dy® = 9,8 —ieA, x®,  F, = 9,4, — 9,4, —ie[A,, A,

e denotes the coupling constant of the gauge interaction. g is the mass parameter and A
stands for the coupling constant of the scalar self-interaction, which we shall take to be
positive.

In the enveloping-algebra approach the noncommutative fields are defined in terms of
the ordinary fields —the ordinary U(1) gauge field a, and the ordinary complex scalar ¢
with U(1) charge e— by means of the Seiberg-Witten map. It is the ordinary fields a, and
¢ that will be chosen as the field variables to be used to first quantize and then renormalize
the theory.

At first order in h#*¥, the most general Seiberg-Witten map reads

eh

A, =a, — Eeaﬁaa(zagau — Ouag) + hO,H + hS, + O(h?),

d=¢— %eaﬁaaam +ihH¢ + hF + O(h?),

H = 210,05 (2.2)
S, = K100, fus + £20,°0" f,5 + er3 0,0, (6" d) + iers0,” (D, b — ¢* Dy o),

F = er50° fa50,

which has five parameters —four real parameters x1, K9, k3, k4 and a complex parameter
k5— labelling the ambiguity associated with field redefinitions. The real parameter x
parametrizes a gauge transformation of the fields.

For convenience, we introduce next the following basis {ti}i:Lm,g of independent, mod-
ulo total derivatives, and gauge invariant monomials that are of order one in h8*" and have

mass dimension equal to four:

tr = 0% fop fpo [*° ta = 0% fopfoo " ts = 004" ¢ O fap
ts =0 (Do) ¢ 0 fap t5 = 0°°(Dad)* ¢ 8, f5" te = 0°(Dy)* DPdfup (2.3)
tr = 0°P(Da®)* DPG f5, ts = 00 fup (670)* by = p?0° fop 6% 0.

Substituting first the Seiberg-Witten map of eq. (2.2) in the action in eq. (R.1) and then
expanding in powers of h#*”, one obtains

Sclass = S(O) + hS(l) + O(hQ), (24)

where S(© is the ordinary classical contribution,

SO = [t = L1 + (D6 Do~ 60 - (60" (25)



-now, D, = 0, — iea,— and S(M has the following form in terms of the t;s defined in

eq. (R.3):
S(l) = /d4$ g t1— g to+eCstg+eCyts+eCsts +eCgtg+ eCrir + eCgtg + 6,[1,209759, (26)

where

C3 = —I{g — iK1 — % (KQ —|—Ii4) —{-%163 Cy = —% + 2iImkrs — 2ik; Cs5 = —% —|—2i(l-€2 —|—I€4)
06:—%+2Re/<5 Cr=-1 09:%—21%6“5

2

Cg = % K3 — )\(Rel-ﬂgg — %6)

(2.7)

3. The model in the phase with unbroken symmetry

In this section we shall show that the gauge sector of the model with unbroken gauge
symmetry is one-loop renormalizable at first order in h6*”, and that the matter sector is
not renormalizable.

3.1 Feynman rules and one-loop UV divergences

In the case at hand p? > 0, so that the classical vacuum of the theory is the trivial field
configuration ¢ = 0 and a,, = 0. To quantize the theory at first order in h0*", we shall add
to the classical action in eq. (£.4) the gauge-fixing, Set, and ghost, Sgp, terms, to obtain

S = Sclass + St + Sen = S + hSW 4 Syp + Sy, (3.1)
where
1
St = /d4:6 ~ % (0ua")?,  Sgn = /d4:6 cd* c.

Recall that it is the ordinary fields a, and ¢ that furnish the field variables to be used to
carry out the quantization process: in the path integral we shall integrate over a, and ¢.
Notice that for our choice of gauge fixing, the ghost fields, ¢ and ¢, do not couple either to
a, or to ¢, and hence we will dispose of them.

The Feynman rules that the action in eq. (B.J]) gives rise to are depicted in figure 1 of
the appendix, where the following notation is used for propagators and vertices:
Propagators

ap — G (k) = g | = g + (1 ) 8]
o — G(k) = 2 i

—m?2+ie

Ordinary vertices

Flz(l?i)!t[r;p, q] = ie(p" + q*) Fl(tgg)wj[r, s;p, q) = 2ie?gh FEE)?%) [r,s;p,q] = —iA



Noncommutative vertices
t(1
r (1,%)“[7“;19, q) =
e| —2C30°"(p — q)a(p — @)* + 2C40°"(p — q)a(p — q) - p — C50*Cpags(p — ¢)*
— C50%po(p — q)* + 2C60°" (p — @)ap - ¢ + C70°Ppa(p — q) " — C70°*pagq - (p — q)
+ 2Co 1?0 (p — q)a]
#(1
Ty "p.a.r) =
—5 (207" palq - rg"" — q"r") + 20%qo(r - pg™ — ri'p") + 20%Tra(p - q9" — p”é]“)]
+e 0% paga(rig”m — 17 g™) + 0Ppara(qh g™ — ¢"g") + 0P qara(p’ gt — pg’t)
— 0% pa gt — 0%part' gt — 0 qartp” — 0 qapT — 0% rap”q? — 0 raghp"
+ 0" (p-rq" —q-rp") + 0 (p-qr —r-qp¥) + 0" (q - prt —r -pQ“)]
t(1) pv
F(g’i)ﬂ [7"7 S;pa q] -
e2 [C4(29°”’3“3a + 20%1rVry) 4+ C’5(0“53”35 + GVﬁr“rg — 0H (52 —1?))
+ Cs(20%7(q + p)Fsaq + 20" (q + p)”ra)+C’7(0“535q” —O*q - s+9aﬁpa3ﬁg“”—9°‘”pas“
+ 9”5r5q“ + 0Hvg . r + G‘wpargg“” — Ga“par”)]
1) pv
Tl 5, t:p,q) =
e? [406(00‘1’9“”1504 + 0%V ghP s, + 0GP Pry) + Cr(OMPg7P (L + s)g + 68 gl (1 4- t)s
+ PP ghv (s 4 r)g — OHPtY — OFV sP — QVErP — QUPLE — 9PV st — GPHTY)
I’lé(ll’%)“[t;p,q; 1, s] = 8eCgh*t,,.
(3.2)
Ci, i =1...9, have been given in eq. (£.7).
Now, using the fact that the BRST transformations of a, and ¢ read sa, = J,c and

s¢ = ie ¢ ¢, respectively, it is not difficult to conclude that in dimensional regularization the
one—loop
pole

up to first order in h#*¥ this functional should read

pole part of the one-loop 1PI functional, I'[a,, @] , must be gauge invariant. Hence,

Plap, 6,6 Tpgie " =T Olay, 6,6 Toai * + hTOlaw, 6, 63" (33)

pole pole pole

where

TOa,, ¢, ¢*100 1% = [d'z — L f, [ +wy (Dy)* * D' — ws 26" ¢ — wy 3 (¢*¢)2,
ra,, ¢, ¢*]ggfe—1°op = [d% &z1t1 — Szato+ 35 gezit; + eplzoty.
(3.4)
Thet;s, i =1...9, are the nine monomials in eq. @), andw;,2=1...4,and z;,1=1...9,
stand for coefficients that are simple poles in e = D/2 — 2.
Let I‘é‘;’;ygm [k; y1; 21] denote the 1PI Green function corresponding to m a,(z) fields,
n ¢*(y) and n ¢(z) fields. Ignoring the tree-level ghost contribution, we have that the 1PI



functional reads

Ulay, ¢,¢%] = n, / H H Pz dPydP 2T " s g 2a, (@) (9)$(z1)-
k=11=1
(3.5)
The computation of the w;s, i = 1,...,4, in eq. (B.4) is a standard exercise in intro-

ductory courses to renormalization theory, so we will just quote the result:

e2 e2 62§ - A

- 3— £s— 4
W= T qme W2 = g 38w 1672¢

L [2464 4 25+5A] (3.6)
Wy = ——— — —4e . (3.
P 4T 3o02¢ A

The computation of the z;s, i =1,...,9, in eq. (B.4) is, though, a very lengthy and involved
computation since the pole part of a large number of topologically inequivalent diagrams —
94 altogether— with a single noncommutative vertex —which is in general a long expression—
must be worked out. It turns out that to obtain all the z;s one must evaluate the pole
pvp ok

part of the one-loop contributions to I' ) and Fé ) that are linear in 0*¥ —see

(3,00 (1,1

eq. (B.H) for notation. Let us next display the values of these one loop pole parts that we
. 1) 1 1

shall denote, respectively, by U [p, pa, —py — pal?2 %%, TR [py — g pr, ol P

one—loop

and Fﬁl)z) [p1 + P3 — P2 — Pa; 1, P2, P3, Pa ot

The aaa 1PI Green function F‘(‘3 g) There are 4 topologically inequivalent diagrams

—see figure 2 in the appendix— contributing to the pole part of this Green function at first
order in h0", and they lead to the following result:

2
(Dpvp _ o jone—loop € t(1)pvp _
L5 [p1, P2, —P1 — P2] o = I8 L5 0 [p1, P2, —P1 — P2, (3.7)
where I' (él()]’; "P is the tree-level contribution given in eq. (B.9) coming from the contributions

t1 and to t0 Seass —see egs. (R.4) and (P.4).

The a¢p*¢ 1PI Green function Fé 1) The pole parts of the 11 topologically inequivalent
diagrams in figure 3 of the appendix are to be computed, to obtain the following answer:

1“8’{‘)[731 pip1spaliee P = E(l)) [A3, Ag, s, Ao, Az, Bgs p1 = paiprspal,  (3:8)

where F((lli)u[Ag,A4,A57A67A7,A9; r;p, q] is obtained from Fi(ll,i)“[r;p, q] in eq. (B-F) by

replacing C; with A;, i = 3,4,5,6,7 and 9, where

Ag = 55 [11426C, —13C5 —26C5+13C7 —4C3(1+3€) — A(—12C5+6C4 —3C5 —6Cq
+207)]

Ay = 555 [2 — C5 + 207 +204(4 — €)]

A5 = gz (21 +C7) + C5(3 — &)

Ag = g5 [—1+ Cr +2Cs(4 — £))]

A7 =155 |4+ Cr (T~ €)]

Ag = 5515 [8Cs+€*(—8C5+4Cy —2C5 —2C6+2C7+2Cy (2—€)) — A(—4Cs +C7 —2Cy)).

(3.9)
The constants C;, i = 3,4,5,6,7 and 9, are defined in eq. (R.7).



The a¢*pp*¢ 1PI Green function F?L?)' Let Flz(llg
t(1)p

T

the pole part of the 79 topologically inequivalent diagrams in figure 4 of the appendix

§[As; t;p,q;7,8]  denote
[t;p,q;7,s] in eq. (B-F), once Cg is replaced with As. Then, the computation of

leads to the following equality:

1 ne—pol 1
PEI?S) [P1+p3—p2—pa; p1, P23 P3, Palor - = Fﬁg;‘)‘ [Ag; p1-+p3—p2—pa; p1, p2; P3, pal, (3.10)
where
Ag = 25617r_25 [_434(_12 +4C3 — 2Cy + C5 + 26Cs — 8C7) + 5)\2(406 - Cy)

3.11
—8e2\(8C3 — 4Cy + 2C5 + Cg — C7) + 32e%2C5(2 — £) + 80ACy). (3:11)

Taking into account eqs. (B.7), (B.§) and (B.1()), one concludes that the z;s,i =1,...,9,
in eq. (B.4) are given by the following equalities:

62

4872
where the A;s, i = 3...9, are given in egs. (B.9) and (B.11)).

21 = 29 = ZZ‘ZAZ', Vi=3...9, (3.12)

3.2 One-loop renormalization

Let us assume that the fields and parameters of the action in eq. (B.1)) are the bare fields
and parameters of the model. Then, as usual, we shall say that the model is one-loop mul-
tiplicatively renormalizable at first order in h#*, if the free coefficients of the counterterm
action obtained by introducing the following renormalizations of the fields and parameters

of the action in eq. (B.1)

ay = Zs/*al? ¢ = 22" e = ZeR

1/2
p=ZY*uk A= Z\F ¢ = Ze£h (3.13)
0 = Zyo"t Ki = /-{ZR 4+ 0ri, 1 =1,2,3,4 Reks = Re/{t—)R + 0Reks

Imks = Im/{5R + 6Imeks

can be chosen to cancel the UV divergences of the 1PI functional given in
eas. (B3, (), @) and (51D,

Let 0Z, = Zqg — 1,02y = Zy — 1, 0Ze = Zo — 1, 02, = Z,, — 1, 02y = Z) — 1,
0Z¢ = Z¢ — 1 and 6Zy = Zy — 1. Then, the multiplicative renormalization in eq. (B.13),
when applied to the action in eq. (B.]), yields the following one-loop counterterm action
up to first order in hO*":

S = S5 + hSY,
where
Set) = [t — 30Zafyu [ + 6 Z5(0u8)" "0 — (62, + 0 Z,)6"0
—ie(0Z4 + 0Zc + %5Za)(9u¢*a“¢ +ie(6Zy + 02, + %5Za)q§*a“8u¢
+ (207 + 620 + 024) 6" dayal — 3(02 +20Z4)(¢*9)* — 3¢ (070 — 6Z¢)(Bat)?,

S = [d% € (02 + 6Za)tr — £(0Z0 + 6 Za)ts + € 34 [0C; + Ci(67Z9 + 2t
+ 6[508 + 08(529 + 2(5Z¢)]t8 + 6M2[5CQ + 09(529 + 5ZM + 5Z¢)]t9.
(3.14)



In the previous equation the fields a,, and ¢ and the parameters ple,Nand ki, i =1,...4
are, respectively, the renormalized fields and parameters of eq. (B.13). We have suppressed
the superscript “R” to make the notation simpler. To simplify the expression for Scé , the
identity 07, = —2§Z,, which is a consequence of the BRST invariance of the theory, has
been used. Notice that as a consequence of the identities in eq. (B.7) the 6C;s in eq. (B.14)
are defined by following equalities:

6C3 = —6Reks + i6lmrs — & (kg + 0ka) + 5 0k — i0ky  6Cy = 2i6Imrs — 2i0k,
0Cs = 2i(5/€2 + 5/’4}4) 0Cs = 20Reks
507 =0 509 = —25Re/<5
0Cs = %(262/{3526 + €26k3) — M0 Zy\(Reks — %) — MReks.
(3.15)
Of course, 0Z,, 02y, 0Z., 6Z,, 0Z) and 0Z, are the same as in the ordinary model,
and in the MS scheme they read

2(3_
020 = g = —20Z¢ = 6Z¢, 6745 =—5555,
o 1 ] 2 (3.16)
021 = gmze 02N = —mp2; [2467 — 12e” + 54-

Next, in the MS scheme, §Zy and 6C;, i = 3,...,9, of Sétl) in eq. (B.14) must be chosen —
were it possible- so that the sum I'") lay, ¢, gb*]gr;f;b()p—l—sgtl) vanishes. T'(1) lay, ¢, QS*]EI(;T:OOP
is given in eq. (B.4) and the values of its coefficients —the z;s— are summarized in eq. (B.19).

We thus conclude that §Zy must satisfy the following equalities:

—21=0Z9g+0Z,, —2z0=0Zy+ 2, (3.17)
whereas for §C;, i = 3,...,9 the following set of equations must hold:
—z; = 0C; + Ci(6Zy + 5Z¢), 1=3,4,5,6,7
—23 = 0Cs + Cg((SZg + 25Z¢), (3.18)

—z9 = 0Cy + 09(529 + 5ZM + (5Z¢).

Taking into account eqgs. (B.12) and (B.1€), one concludes that the two equalities in
eq. (B-17) hold if, and only if,

679 = 0. (3.19)

This equation leads to the conclusion that #*” is not renormalized at the one-loop level in
the MS scheme of dimensional regularization.

That the two equalities in eq. (B.17) hold is a necessary and sufficient condition for the
gauge sector of our model —no matter fields in the external legs of the Green functions— to
be multiplicatively renormalizable at one-loop and at first order in 6#¥. BRST invariance
does not imply that eq. (B.17]) must be verified, since in our case the most general BRST
invariant contribution involving only gauge fields reads up to first order in hg":

1 e e
/d4$ — Zwl f“l,fuy + thQ t1 — h§Z3t2, (320)

Mark that the real numbers wq, 2o and z3 are arbitrary. Now, only if zo = z3, it is possible
to renormalize the #*" dependent part of the functional in the previous equation by means



of the renormalization in eq. (B.13). Of course, we have shown by explicit computation
that for our model 2o = z3. But there is more: we have obtained not only that zo = z3,
but that zo = z3 = wy. The latter train of equalities has nothing to do with the gauge
sector of the model being renormalizable at one loop, but with the fact that 8*” is not
renormalized at one-loop. We do not believe —following the author of ref. [[7— that this
situation —that z9 = z3 = wy— is an accident, but that it perhaps hints at the existence of
an as yet unknown symmetry that mixes the three monomials in eq. (B:20). This symmetry
must depend on #*¥, for it must relate monomials with different powers in 8*¥. Notice that
what we have obtained is that the renormalizability of the gauge sector of the model at
one-loop and first order in 6*" is governed by the renormalization of the coupling constant
e —recall that BRST invariance implies 07, = —26Z,.

Now, the matter sector of the model in the symmetric phase will be multiplicatively
renormalizable —i.e by means of the renormalization transformations in eq. (B.13)— if, and
only if, there exist 6x;, i = 1,...,4, Redxs and Imdks such that the set of egs. (B.1§) holds
for them. Taking into account the values of the z;s on the Lh.s of eq. (B.1§) that are given
in eqs. (B-19), (B-9) and (B.1), using the definitions of the §C;s, i = 1,...,9, provided in
eq. (B.19), and recalling that the renormalized Cjs, i = 1,...,9, are defined in terms of
the renormalized r;, i = 1,...,5, by the identities in eq. (R.7) and that the values of the
dZs are those in eqgs. (B.16) and (B.19), one concludes, upon substitution of the previous
results, that there is a unique set of parameters dx;, ¢ = 1,...5, that solves the system of
equations constituted by the first five 4 = 3,4,5,6 and 7— equalities in eq. (B.1§). This set

of parameters reads
2

0x1 = 0lmks — 326 5 (2k1 + ko — 2ImKs + Ky)
Sky = —0ky e (3.21)
1 2
6/@3 = 19275('26[6 (6 + 40/"»’3) — )\(1 + 12/"»’3)]
e
(SRGHEJ = m(5 — 8Re/£5).

And yet, the full system of equations has no solution for p? # 0, as the last equation
~the equation with zg on the Lh.s— is not satisfied by the dx;s, i = 1,...,5 in eq. (B.2]).
Indeed, upon substitution of those values in this last equation one obtains the constraint
6e? — A = 0. Notice that this constraint is not even renormalization group invariant, so it
cannot be imposed in a renormalization group invariant way, precluding the implementation
of the reduction-of-the-couplings mechanism of ref. [BQ] to dispose of the unwanted UV
divergences. We thus conclude that the matter sector of the theory is not multiplicatively
renormalizable if the scalar field is massive. If u? = 0, the last equality of eq. (B.1§) need
not be satisfied since, now, terms of the type p?tg occur neither in the classical action
nor in TMWfa,,, ¢, ‘75*];2‘136_ %P _gee eq. (B4). Unfortunately, the equation —zg = 6Cs +
Cs(0Zg + 26Z) is not satisfied by the parameters given in eq. (B.21]), for its substitution
in the latter equation leads to the constraint 204e? — 76e?X\ + 1502 = 0. Remarkably,
all dependence on the arbitrary parameters of the Seiberg-Witten map disappears, but
the previous constraint is, of course, not valid for arbitrary e and A. The constraint is

not even renormalization group invariant. In summary, the matter sector of our model is



not multiplicatively renormalizable in the phase with no spontaneous symmetry breaking
whatever the value of the mass.

We shall next address the issue of the non-multiplicative renormalizability of the model.
We shall show that turning non-multiplicative —but local at every order in 6#Y— the rela-
tionship between bare and renormalized fields will be of no avail in making the model
renormalizable. Let us assume that the bare fields and renormalized fields are not related

as in eq. (B.1J), but as follows
1 1
Oy = i+ 020 atho Zulaf, o7, 01, 0,0M ] 6 = 6™ 024 6™ HhoZla,, O, 6, 0, 0,

where

52 =110, 00" 9+ 220, a0 (96 + 6" §") +i230,% a0 (96— " D) + 240, (D b+ 0 67
+ix50,% (000 — 0ad* ¢*) + 260, ana,a’ +x70,% a0 0,0 +:U89Ha(9paaap—|—x99ﬂa82aa
+ 2100, 00 pa” + 111 11%0,% a0+ p2120,* 0 (p+ %) +ipz130,, On (p— ¢*)
+ px140,%aa (¢ + ¢*) +ipri50,%aa (¢ — ¢*) + xlﬁﬁaﬁaaaﬁau + m17905(9uaaaﬁ
+ xlgé?aﬁ(?aauag,
07 = zleaﬁaaan + zﬁaﬁaaam + z;;@aﬁaaaﬁqﬁ* + uzﬁaﬁfaﬁ,

(3.22)
with real z;s and complex z;s. The previous 7, and §Z are the most general polynomials
of mass dimension one that are linear in #*” and do not contain any contribution that can
be removed by modifying the value of the free parameters of the Seiberg-Witten map in
eq. (2.

0Z, and 4Z in eq. (B.29) yield the following sum of new counterterms

SRV — [ dhy (52,0, fP" —i6 Z,,(DF¢* — ¢* DRG) — 5 Z* D2p— 5 Z D" — 2 (¢* 5 Z+ ¢S Z*)
— 3026 ¢* + 6Z¢¢™?).
Now, Sétl)new must be invariant under the BRST transformations sa, = d,c, s¢ =
tecp,s¢* = —iece®. A lengthy computation shows that sSi™ = 0 if, and only if, z; = 0,
Vi, and z; = 0, Vi.

4. The model in the phase with spontaneously broken symmetry

In the case pu?> = —m? < 0,\ > 0, the classical Poincaré-invariant vacuum of the theory
with the action in eq. (R.1]) is given by ¢*¢ = % To perform perturbative calculations
in the quantum theory we have to expand the fields around a given vacuum configuration.

We choose the following parametrization:

¢ = %wwl + i),

with v = \/% at the classical level and with ¢; and ¢9 being real fields that vanish in

the classical vacuum.
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Since we are interested in the renormalization properties of the model, we shall consider
the following family of R¢-gauges to quantize it:

St = / £b2 + b(Ouat + Eppa),  Sen = /d4:v e(—0% — Epe(v + ¢1))e. (4.1)

b is an auxiliary real field and ¢ and ¢ are the ghost and anti-ghost fields, respectively.
Recall that it is most useful to choose p = ev at the tree-level.

Now, up to first order in h8*¥, the action that we shall use to carry out a path integral
quantization of the theory reads

Sssp = SO[p = 1/vV2(v + ¢1 + i), a,, u? = mza)\]+sgf+5gh

+hSW[p = 1/vV2(v + ¢1 + i), ap, p> = —m?, X, 04], (4.2)

where S and S have been defined in egs. () and (2.9), respectively, and Ser and
Sen are given in eq. (E). Upon integrating over the auxiliary field b, the previous action
leads to the set of Feynman rules depicted in figure 5 of the appendix. The following
definitions are needed to turn the Feynman rules into mathematical expressions —notice
that I’Egg’lp’f)’ "Hm momental, i = 0,1, denotes a tree-level vertex with m fields a,,, n fields
@1, p fields ¢9 and ¢ pairs, (¢, ), of ghost-anti-ghost fields:

Propagators

—i v krEY
(k) = m[g“ _(1_§)W
01— G1(k) = g
(k) = k2—§(;v)2+i6
(k)

—_ v _
T k2—¢(ev)?+ie

rt(0) 0) pv . v 0) .
Fi(li J[ripsa] = e(p" —q") “21’50 [p, q;7] = 2ie*vgh tgwo p,q,7] = —Zidv
0 0) . 0 o
l(té& [p T ] 22)\2} té,1702 [p q,T ] = _15622} F(é;‘tloljo) [p,q, T, S] = 22629M
=t(0)uv ~+(0 ) ~ 20 .
P(%,é)” [1%(1,7“ o = 2ictg™ 11(5),4,0,0) [P, g7, 5] = —3iA 11(5),0,4,0) [p,q,7, 5] = —3iA
I ol @7y 8] = —3iX
(072 r

B i) = S0, 0]+ T —g,0) + T r:0,:0,0)
~ 41 —1v 1 1
Finolria = == (T s —¢.0) = T 0, 4))

2
v Dpv
2273,070)[T, s] = Erlég,i? [r,5;0,0]

~ 1

rﬁ%mvm@y=5wﬁkm—nd+rﬁk[ —go) + JT Y 50,0,
=t(1 1

(N 2( s —p.a) + T s —a. ) + 41)2?2( 10,50, 4]
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i
((11,371,0) [rsa;p] = _§(Fl(€(1%t[“ P - FESE[T; ~ar)

piDmn [r,s,t] = Ft(l)wn[r s, t] + U—QFt(l)Wn[r s,;0,0]
(370,070) 99 (3,0) 99 2 (3,1) 19y Yy My
=t(1)pr v 18117% t(1)uv
Pi(z,ifg,o) [r,s5q] = E(FE(Q%!{ [r,5:0,4] +F(é i’; [r,s;—q,0])
= v —v v v
D0 o sial = - (G s =4, 0 = ([, 5:0,q])
(2,0,1,0) 2 (2,1) (2,1)
=t(1)pr 1 pv
FE(Q,;?LO,O) [T, S D, Q] = §(F2(£(27i§t [T, S — ] + F(é i) [’I“, S; —q,p])
St(1)pr 1 I8)2%
PI(E(Z(){;’O) [7"7 S, D, Q] = 5(112(27%? [7“, S;—p,q ] + F(é i) [r, S; —qu])
=t(1)pr —1 18117% t(1)uv
Loy ol sia,0] = 7@2(2,37 [r, 5 —py ] = T(o )" Iry 55—, 1))
=t(1)pv 1)y,
e (1.5, t:q) = oT(S [, 5,4:0,4]
~t(1 3v 1
FIE(L%%,O) [8’p7q7r] - 7]‘12(1 ;l)i[s’ Oapv Q7r]
=t(1 v 1
FIE(IEMQ )[8 piq,T ] §F€(17%l;[8707pa Q7T]
IN‘IES%“O g) [’I“ s,t;p, Q] FES%’J/P [T’ s,t; —p, Q]
f’éé,()fé”,g) [r,s,t;p,q] = Fig’i’;yp[r,s,t; —p, 4|
=t(1) 3t
F(174i)70)[7f,p,q,7’, S] - §F(17le[ta b, 4q; ) ]
=t(1 3
I\lé(l,()] )[t’p7Q7r S] = §F((1 %/;[t —b,q;—T, ]
~¢(1
FIE(I,%MQ O)[t p,q;T, S] §F((1 gl;[t -p,q;—, ]
with the T'’s as given in eq. (B.J), but evaluated at u? = —m?2. All momenta are taken as

positive when coming out of the vertex.

Before discussing the renormalizablity at first order in 6#” of the model in the phase
with spontaneous symmetry breaking, we shall just remark the obvious fact that the one-
loop UV divergent contributions that do not depend on 6*” —i.e., the one-loop UV di-
vergent contributions of the ordinary model- can be multiplicatively renormalized —see
refs. [B1, B2, BJ] for further details— by expressing the bare fields and parameters —denoted
by the superscript 0— in terms of the renormalized fields and parameters —labelled with the

superscript “R”— as follows:

0l = Z3%al 0 = 2,1%61 08 = 2,7l
vy = Z;{Q( R4 dv) eV = Zee m0 = ,1,1/2m (4.3)
A0 = Z\\E.

In the MS scheme of dimensional regularization —recall that D = 4 + 2¢— one has that
Zg, = Zg, = Zy, with Zy given in eq. (B.16), and that Z,, Z, Zy, = Z,,, Z) take the same

- 12 —



values as in the phase with no spontaneous symmetry breaking —see eq. (B.14)—, if

D
oB T 1672e

4.1 One-loop renormalizability of the gauge sector

In dimensional regularization, the pole part of any UV divergent one-loop Feynman inte-
gral, Ip, is a polynomial on the external momenta of the integral and the masses of the
free internal propagators, if it is besides IR finite by power counting at non-exceptional
momenta. Further, if the Feynman integral, say Ir(m = 0), that is obtained from Ir by
setting to zero all the masses in the denominators is still IR finite by power counting at
non-exceptional momenta, there happens that the pole part of I that does not depend on
the masses is given by the pole part of the integral Ir(m = 0).

For the remaining of this subsection, to render both the computations and the sub-
sequent analysis as simple as possible, we shall send to zero the gauge parameter, £, that

occurs in the Feynman rules of the model —these rules are given in figure 5 of the appendix.
SSB, one—loop
pole

denote the one-loop pole part of the 1PI functional of the gauge sector of the model at first

This way the interaction vertex involving the ghost fields vanishes. Let T'(1) la,]

order in O*¥ —by definition I’(l)[au]gii’onefloop only depends on a,. Taking into account

the arguments presented in the previous paragraph, one concludes that the contributions
to F(l)[au]iig yone=loop that do not depend on any dimensionful parameter —that we shall
denote with M- are equal to those in the massless theory, which were obtained in the

previous section:

P(l)[ M]SSB, one—loop _ F(l) [aM]M—independent + F(l) [aM]M—dependent

ole pole pole ’ 4.4

F(l)[au]pd—emdependent _ fd4:C (% 2t — % 2o to ) ( )

t1 and t were defined in eq. (B3), and z; and 2y were given in eq. (B:13). T™ [au]%fedependem
~the M —dependent contribution to I'} [au]gnge rone=loop_ a1 he obtained from the pole of

the M-dependent part of the one-loop 1PI diagrams contributing to < 0|T{a,(z)a,(y)}0 >
and < 0|T{a,(x)a,(y)a,(2)}|0 >. The topologically inequivalent diagrams that contribute
at first first order in 8# are given in figures 6 and 7 of the appendix. It turns out that

T(1)[q, M) dependent _ (e1)? gos [y (z A 0,00 fog + i AE" 0,0, f57+
e Aég:o) a,a” fop + € A;g:o) aaapf5p>,

(4.5)

where Aé(fzo), Aéﬁzo), A(()ﬁ:o) and Agﬁzo) are obtained by substituting £ = 0 in Ay, Aj, Ag
and A7, as given in eq. (B.9), respectively.

Let us now show that the UV divergences in eqgs. (.4) and eq. (f.§) can be removed by

renormalizing the parameters and fields as in eq. (f.J), if we also introduce the following

renormalization of the parameters k;, i = 1,...,5, of the Seiberg-Witten map in eq. (R.9):

k) = kI 4 0k, 0 =1,2,3,4, Rek? = Rexll + 0Reks, Imkd = Imsl' + 6Tmrs.  (4.6)

i —
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For completeness one should also include the following renormalization of 9#: §0H =
Zo0%™  but as we shall see the renormalization of the gauge sector implies Zg = 1 at the
order at which we are working.

The substitution of the definitions in egs. (f.3) and (JLG) in the action in eq. ([.3)
yields the following 0¥ —dependent counterterms involving only gauge fields:

SWVla] = [d% [&(6Z + 6Za)t1 — §(6Z0 + 6 Za)t2 | +
2
O gaf [ by {i [6Cy + C4(6Zg + 624)] apd” fap + i [0Cs + C5(6Zp + 6Z4)] andpfs I+
2
—(e;) oo’ fd4:v {e [0Cs + Cs(6Zg + 02Z4)| apa’ fop + €[0C7 + C7(6Zg + 6 24)] aaapfgp},

where 6Cy, 6Cs5, 6Cs and dC; were defined in eq. (B.1§). In obtaining Sétl)[au] above, we
have used the results: 67, = —26Z., 6v€=0) = .

It is plain that Sétl ) [a,)] defined in the MS scheme will cancel T'(") [au]gngG’ one=loop given
by eqs. (4) and ([|.3) if, and only if,

486—7326 — 629 + 6Za,

oA 4 ALY 950, — 605 + (204 — C5)(6Zs + 02,),
_AZ@:O) = 0C; + CZ'((SZQ + (5Z¢), 1=206,7.

The previous set of equations is a subset of the set of equalities constituted by eq. (B.17)
and the first five equalities in eq (B.1§) evaluated at £ = 0. Hence, taking into account
that 67, and 6Z4 have the same value —given in eq. (B.16)— as in the phase with unbroken
symmetry but with the choice € = 0, one concludes first that Zy = 0 and second that by
choosing dk;, i = 1,...,5, as in eq. (B.21]) -i.e., as in the symmetric phase— we will be able
to remove the UV divergences of the gauge sector at one-loop and at first order in 6#¥.
Let us show next that the one-loop renormalizability of the gauge sector of the model in
the phase with spontaneous symmetry breaking that we have just discussed is a consequence
of the two facts: i) that the U(1) symmetry is broken spontaneously so that the action in

eq. (1.2) is invariant under the following BRST transformations
sa, = 0uc, sP1 = —eca, Spa=ec(p1 +v), sc=0, sc=b, sb=0

and 7i) that the pole part of the one-loop 1PI functional that does not depend on v is
the same as in the massless model. To use as simple as possible linearized Slavnov-Taylor
equations, we shall still keep the gauge-fixing parameter £ equal to 0. For this value of the
gauge-fixing parameter the ghost and anti-ghost fields decouple and, hence, they do not
contribute to the dimensionally regularized one-loop 1PI functional, I'sgg, obtained from
our Feynman rules in figure 5 of the appendix. Since the gauge-fixing equation

0l'ssB
)

= &b+ 00" + Epoo

holds for the dimensionally regularized 1PI functional I'ssg obtained from Ssgp in eq. ({£.3),
it turns out that in the gauge £ = 0 the BRST invariance of the model implies that the

- 14 —



one-loop contribution, I’(S)g%*lOOp, to I'sgp is a function of ¢ = %(v + ¢1 +ig2) and ¢* that
must satisfy the following linearized Slavnov-Taylor equation
one—loop one—loop 5Fone—loop
de sa. (x SSB + 8¢ T SSB + 8¢* T SSB =0, 4.7
[ saute) SR (@) TSR () SR (4.7

where s¢ = iecop and s¢p* = —ieco*. Eq. (Q) leads to the conclusion that when & = 0
the pole part of the one-loop 1PI functional Fgg%_lwp is given by the most general gauge
invariant local polynomial which is a functional of a,, ¢ = %(v—i—qﬁl +i¢o) and ¢* —it must
then be a local polynomial of f,,, ¢ and ¢* and their gauge covariant derivatives. This

result and the analysis carried out in the first paragraph of this subsection implies that for

& = 0 the pole contribution to I’gggloolo that is linear in 8*¥ say I‘éls)}; ne*lOOP, reads
e e i
Féls)gne_b()p = /d4x 3 A0 — 3 250 + Z ezi(gzo) ti + erg(m, v)to, (4.8)
i=3
where Zi(g:o)’ i=1,...,8, are given by the corresponding z; in eq. (B.13), upon substituting

£€=0,and t;, i =1,...,9, are defined as in eq. (R.3) but, now, with ¢ = %(v + ¢1 +iga).

We have thus shown that, for & = 0, I‘égé) ne=looP j¢ a linear combination of the basis of gauge
invariant polynomials given in eq. (R-J) with coefficients such that, when m and v — 0, one
recovers the corresponding object for the massless Higgs-Kibble model at & = 0. Finally,

eq. (B9) leads to I’(l)[aﬂ]iig’ one=loop 45 oiven by eqs. ([L4) and (fL§) upon imposing the

condition £ = 0.

4.2 Non-renormalizability of the matter sector

Recall that we are in the phase with spontaneously broken gauge symmetry. Let
FM —independent
pole

that does not depend on any dimensionful parameter M for arbitrary . Taking advantage

[ay, @1, 2] denote the one-loop pole part of the 1PI functional of the model

of the discussion carried out in the first paragraph of the previous subsection, one concludes
that FM—independent
a pole

less model. We have shown in the previous section —section 3— that there is no local way of

lau, 1, ¢2] is equal to the corresponding object computed in the mass-

renormalizing the fields and parameters of the model that removes the UV divergences of
the matter sector of the massless model. Hence, in the phase with spontaneous symmetry
breaking, there is also no local way of renormalizing the fields and parameters of the field
theory that substracts the M —independent UV divergent contributions occurring at the
one-loop level in the 1PI functional of the matter sector of the model.

5. Summary and conclusions

In this paper we have shown that the noncommutative U(1) Higgs-Kibble model formulated
within the enveloping-algebra formalism of refs. [, @] and is non-renormalizable in
perturbation theory in the phase with unbroken gauge symmetry, whatever the value of
the mass of the complex scalar field. We have also shown that the same result holds when

the model is in the phase with spontaneous symmetry breaking. However, the gauge sector
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of the model is one-loop renormalizable at first order in 8*” whatever the phase we look
at. This is quite surprising —although in keeping with the results obtained in refs. [[L7]
and [R0] for other models— since gauge symmetry -either noncommutative or ordinary— and
power counting do not imply it —see discussion in the paragraph below eq. (B.19). This
renormalizability of the gauge sector of the model appears even more surprising if we take
into account that the matter sector is non-renormalizable and that all the one-loop UV
divergent diagrams that contribute to the gauge sector in the phase with unbroken gauge
symmetry —see figure 2— have only scalar particles propagating along the loop. The question
thus arises as to whether the renormalizability of the gauge sector of all the models studied
so far, hints at the existence of an as yet unveiled new symmetry of these gauge models
so that the part of the 1PI functional that only depends on the gauge fields is constrained
by it. The existence of such a symmetry will be of paramount importance in modifying
the matter sector so that it becomes renormalizable. Finally, the results presented in this
paper make us confident that all the one-loop UV divergent contributions to the gauge
sector of the noncommutative standard model coming from the matter sector of the model
are renormalizable, at least at first order in 0. Hence, phenomenological results such as
those obtained in ref. [[[T] are robust due to the one-loop renormalizability of the gauge
sector.
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A. Feynman rules and Feynman diagrams with a noncommutative vertex

In this appendix we collect the figures with the Feynman rules and 1PI Feynman di-
agrams that are referred to in the main text of the paper. In figure 1, the Feynman
rules of our noncommutative Higgs-Kibble model in the phase with unbroken gauge
symmetry are given. The topologically inequivalent Feynman diagrams contributing to
Tl o1, D2, —p1 — palomss P, T o1 — pos pr, palimss P and D% [t p, g5, s]omss P ae
depicted in figures 2, 3 and 4. The Feynman rules of our non-commutative Higgs-Kibble
model in the phase with spontaneous symmetry breaking are drawn in figure 5. Finally, in
figures 6 and 7, the topologically inequivalent Feynman diagrams contributing to the pole

part of the M-dependent part of the 1PI functions of the gauge field are shown.
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Figure 1: Feynman rules for the phase with unbroken symmetry.
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Figure 5: Feynman rules for the phase with spontaneously broken symmetry

4

Figure 6: Topologically inequivalent diagrams contributing to the M —dependent part of the gauge
field two-point function.

Figure 7: Topologically inequivalent diagrams contributing to the M —dependent part of the
gauge field three-point function.
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