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1. Introduction

At present, there is only one available framework to formulate gauge theories in noncom-

mutative space-time for an arbitrary simple gauge group in an arbitrary representation.

This very framework is the only known formalism where one may have fields with arbitrary

U(1) charge. The formalism we are referring to was introduced in refs. [1, 2] and [3] and

led to the formulation of the noncommutative standard model [4] and some Grand Unifi-

cation models [5]. Some phenomenological implications of these models have been studied

recently [6 – 11], but quite a lot of work remains to be done in view of the coming of the

LHC.

As is well known, the Seiberg-Witten map plays a central role in the framework of

refs. [1, 2] and [3]. Indeed, the noncommutative gauge fields are defined in terms of the

ordinary fields by means of the formal series expansion in powers of the noncommutative

matrix parameter θµν that implements the Seiberg-Witten map. The noncommutative

gauge fields do not thus belong, in general, to the Lie algebra of the gauge group but are

valued in the enveloping algebra –this is why the formalism is called the enveloping-algebra

formalism– of that Lie algebra. This is quite at variance with the alternative approach to

model building in noncommutative space-time employed in refs. [12 – 14] and [15].

The renormalizability of some noncommutative field theory models constructed within

the enveloping-algebra formalism has been studied in a number of papers: see refs. [16 – 21].

In all these papers, and throughout this one, it is assumed that both the quantization pro-

cedure and the renormalization program deal with the 1PI functions of the ordinary fields
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that define the noncommutative fields via the Seiberg-Witten map. The reader is referred

to ref. [22] for an alternative interesting proposal. The models whose UV divergences have

been worked out in refs. [16 – 21] only have U(1) and/or SU(N) gauge fields and Dirac

fermions in the fundamental representation. It turns out that at first order in θµν , and

against all odds, the one-loop UV divergences of the Green functions that only involve

gauge fields in the external legs are renormalizable in the models that have and have not

Dirac fermions. This is quite a surprising result since, as already pointed out in ref. [17],

BRST invariance on its own cannot account for it, thus hinting at the existence of an as

yet unveiled symmetry of the noncommutative gauge sector of these models. The result in

question is even more surprising if one takes into account that the Green functions that

carry fermion fields in the external legs cannot all be renormalized, thus rendering non-

renormalizable in the enveloping-algebra approach all the noncommutative models studied

so far.

The main purpose of this paper is to see whether the results summarized in the previous

paragraph also hold when the matter fields are not Dirac fermions but scalar fields –let

us recall that the Higgs field is a key ingredient of the Standard Model. The simplest

model that captures some of the features of the noncommutative Standard Model and

includes both gauge fields and scalar fields is the noncommutative U(1) Higgs-Kibble model.

This model has a phase where the U(1) symmetry is spontaneously broken and has also

a phase where the U(1) symmetry is not broken. The renormalization properties of the

noncommutative U(1) Higgs-Kibble model have never been studied when formulated within

the enveloping-algebra formalism, although they have been analyzed within the standard

noncommutative field theory formalism –see ref. [23] for the U(1) Higgs-Kibble model and

refs. [24 – 28] for other models with spontaneous symmetry breaking.

The computation we are about to sketch is quite a daunting one since it demands the

calculation of 94 1PI Feynman diagrams to tell whether the model is renormalizable in

the phase with no symmetry breaking. In this phase, we discuss both the massive and

massless cases. To deal with such a large number of Feynman diagrams we have used the

algebraic manipulation package Mathematica [29]. Then, we shall use the results obtained

in the phase with no symmetry breaking to analyze the renormalizablity of the model in

the phase with spontaneous symmetry breaking.

The layout of this paper is as follows. In section 2, we define the classical noncom-

mutative U(1) Higgs-Kibble model and work out the action up to first order in θµν . The

renormalizability of the model in the phase with unbroken gauge symmetry is discussed in

section 3. In section 4, we analyze the renormalizability of the model in the phase with

spontaneous symmetry breaking. A summary of the results obtained in the paper is given

in section 5. The Feynman rules and Feynman diagrams quoted in the paper can be found

in the appendix.

2. The action. The Seiberg-Witten map

As it was stated in the introduction, our noncommutative field theory model will be the

U(1) Higgs-Kibble model. The model contains a noncommutative U(1) gauge field Aµ and
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a noncommutative complex scalar field Φ coupled to Aµ. The classical action of the model

in terms of the noncommutative fields reads

Sclass =

∫

d4x − 1

4
Fµν ? Fµν + (DµΦ)∗ ? DµΦ − µ2Φ∗ ? Φ − λ

4
(Φ∗ ? Φ)2, (2.1)

where

DµΦ = ∂µΦ − ieAµ ? Φ, Fµν = ∂µAν − ∂νAµ − ie[Aµ, Aν ]?.

e denotes the coupling constant of the gauge interaction. µ is the mass parameter and λ

stands for the coupling constant of the scalar self-interaction, which we shall take to be

positive.

In the enveloping-algebra approach the noncommutative fields are defined in terms of

the ordinary fields –the ordinary U(1) gauge field aµ and the ordinary complex scalar φ

with U(1) charge e– by means of the Seiberg-Witten map. It is the ordinary fields aµ and

φ that will be chosen as the field variables to be used to first quantize and then renormalize

the theory.

At first order in hθµν , the most general Seiberg-Witten map reads

Aµ = aµ − eh

2
θαβaα(2∂βaµ − ∂µaβ) + h∂µH + hSµ + O(h2),

Φ = φ − eh

2
θαβaα∂βφ + ihHφ + hF + O(h2),

H = x1 θαβ∂αaβ (2.2)

Sµ = κ1 θαβ∂µfαβ + κ2 θµ
β∂νfνβ + eκ3 θµ

ν∂ν(φ
∗φ) + ieκ4θµ

ν(Dνφ∗φ − φ∗Dνφ),

F = eκ5θ
αβfαβφ,

which has five parameters –four real parameters κ1, κ2, κ3, κ4 and a complex parameter

κ5– labelling the ambiguity associated with field redefinitions. The real parameter x1

parametrizes a gauge transformation of the fields.

For convenience, we introduce next the following basis {ti}i=1,...,9 of independent, mod-

ulo total derivatives, and gauge invariant monomials that are of order one in hθµν and have

mass dimension equal to four:

t1 = θαβfαβfρσfρσ t2 = θαβfαρfβσfρσ t3 = θαβφ∗φ¤fαβ

t4 = θαβ(Dρφ)∗φ∂ρfαβ t5 = θαβ(Dαφ)∗φ∂ρfβ
ρ t6 = θαβ(Dρφ)∗Dρφfαβ

t7 = θαβ(Dαφ)∗Dρφfβρ t8 = θαβfαβ (φ∗φ)2 t9 = µ2θαβfαβ φ∗φ.

(2.3)

Substituting first the Seiberg-Witten map of eq. (2.2) in the action in eq. (2.1) and then

expanding in powers of hθµν , one obtains

Sclass = S(0) + hS(1) + O(h2), (2.4)

where S(0) is the ordinary classical contribution,

S(0) =

∫

d4x − 1

4
fµνf

µν + (Dµφ)∗Dµφ − µ2φ∗φ − λ

4
(φ∗φ)2, (2.5)
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–now, Dµ = ∂µ − ieaµ– and S(1) has the following form in terms of the tis defined in

eq. (2.3):

S(1) =

∫

d4x
e

8
t1−

e

2
t2 +eC3 t3 +eC4 t4 +eC5 t5 +eC6t6 +eC7t7 +eC8t8 +eµ2C9t9, (2.6)

where

C3 = −κ∗
5 − iκ1 − i

2 (κ2 + κ4) + 1
2 κ3 C4 = −1

4 + 2i Imκ5 − 2iκ1 C5 = −1
2 + 2i(κ2 + κ4)

C6 = −1
4 + 2Reκ5 C7 = −1 C9 = 1

4 − 2Reκ5

C8 = e2

2 κ3 − λ(Reκ5 − 1
16).

(2.7)

3. The model in the phase with unbroken symmetry

In this section we shall show that the gauge sector of the model with unbroken gauge

symmetry is one-loop renormalizable at first order in hθµν , and that the matter sector is

not renormalizable.

3.1 Feynman rules and one-loop UV divergences

In the case at hand µ2 ≥ 0, so that the classical vacuum of the theory is the trivial field

configuration φ = 0 and aµ = 0. To quantize the theory at first order in hθµν , we shall add

to the classical action in eq. (2.4) the gauge-fixing, Sgf , and ghost, Sgh, terms, to obtain

S = Sclass + Sgf + Sgh = S(0) + hS(1) + Sgf + Sgh, (3.1)

where

Sgf =

∫

d4x − 1

2ξ
(∂µaµ)2, Sgh =

∫

d4x c̄∂2 c.

Recall that it is the ordinary fields aµ and φ that furnish the field variables to be used to

carry out the quantization process: in the path integral we shall integrate over aµ and φ.

Notice that for our choice of gauge fixing, the ghost fields, c and c̄, do not couple either to

aµ or to φ, and hence we will dispose of them.

The Feynman rules that the action in eq. (3.1) gives rise to are depicted in figure 1 of

the appendix, where the following notation is used for propagators and vertices:

Propagators

aµ −→ Gµν(k) = i
k2+iε

[

− gµν + (1 − ξ)kµkν

k2

]

φ −→ G(k) = i
k2−m2+iε

Ordinary vertices

Γ
t(0) µ
(1,1) [r; p, q] = ie(pµ + qµ) Γ

t(0) µν
(2,1) [r, s; p, q] = 2ie2gµν Γ

t(0)
(0,2)[r, s; p, q] = −iλ
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Noncommutative vertices

Γ
t(1) µ
(1,1) [r; p, q] =

e
[

− 2C3θ
αµ(p − q)α(p − q)2 + 2C4θ

αµ(p − q)α(p − q) · p − C5θ
αβpαqβ(p − q)µ

− C5θ
αµpα(p − q)2 + 2C6θ

αµ(p − q)αp · q + C7θ
αβpα(p − q)βqµ − C7θ

αµpαq · (p − q)

+ 2C9µ
2θαµ(p − q)α

]

Γ
t(1) µνη
(3,0) [p, q, r] =

− e
2

[

2θαµpα(q · rgνη − qηrν) + 2θανqα(r · pgηµ − rµpη) + 2θαηrα(p · qgµν − pνqµ)
]

+e
[

θαβpαqβ(rµgνη − rνgηµ) + θαβpαrβ(qµgνη − qηgµν) + θαβqαrβ(pνgµη − pηgνµ)

− θανpαqηrµ − θαηpαrνqµ − θαηqαrµpν − θαµqαpηrν − θαµrαpνqη − θανrαqµpη

− qβp · r(θµβgνη + θηβgνµ) − rβp · q(θµβgην + θνβgηµ) − pβq · r(θνβgµη + θηβgµν)

+ θµν(p · rqη − q · rpη) + θµη(p · qrν − r · qpν) + θνη(q · prµ − r · pqµ)
]

Γ
t(1) µν
(2,1) [r, s; p, q] =

e2
[

C4(2θ
ανsµsα + 2θαµrνrα) + C5(θ

µβsνsβ + θνβrµrβ − θµν(s2 − r2))

+ C6(2θ
αν(q + p)µsα + 2θαµ(q + p)νrα)+C7(θ

µβsβqν − θµνq · s+θαβpαsβgµν−θανpαsµ

+ θνβrβqµ + θµνq · r + θαβpαrβgµν − θαµpαrν)
]

Γ
t(1) µνρ
(3,1) [r, s, t; p, q] =

e3
[

4C6(θ
αρgµνtα + θανgµρsα + θαµgνρrα) + C7(θ

µβgνρ(t + s)β + θνβgρµ(r + t)β

+ θρβgµν(s + r)β − θµρtν − θµνsρ − θνµrρ − θνρtµ − θρνsµ − θρµrν)
]

Γ
t(1) µ
(1,2) [t; p, q; r, s] = 8eC8θ

αµtα.

(3.2)

Ci, i = 1 . . . 9, have been given in eq. (2.7).

Now, using the fact that the BRST transformations of aµ and φ read saµ = ∂µc and

sφ = ie φ c, respectively, it is not difficult to conclude that in dimensional regularization the

pole part of the one-loop 1PI functional, Γ[aµ, φ]one−loop
pole , must be gauge invariant. Hence,

up to first order in hθµν this functional should read

Γ[aµ, φ, φ∗]one−loop
pole = Γ(0)[aµ, φ, φ∗]one−loop

pole + hΓ(1)[aµ, φ, φ∗]one−loop
pole , (3.3)

where

Γ(0)[aµ, φ, φ∗]one−loop
pole =

∫

d4x − w1

4 fµνf
µν + w2 (Dµφ)∗ ? Dµφ − w3 µ2φ∗φ − w4

λ
4 (φ∗φ)2,

Γ(1)[aµ, φ, φ∗]one−loop
pole =

∫

d4x e
8 z1 t1 − e

2 z2 t2 +
∑8

i=3 ezi ti + eµ2z9t9.

(3.4)

The tis, i = 1 . . . 9, are the nine monomials in eq. (2.3), and wi, i = 1 . . . 4, and zi, i = 1 . . . 9,

stand for coefficients that are simple poles in ε = D/2 − 2.

Let Γµ1...µm

(m,n) [xk; yl; zl] denote the 1PI Green function corresponding to m aµ(x) fields,

n φ∗(y) and n φ(z) fields. Ignoring the tree-level ghost contribution, we have that the 1PI
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functional reads

Γ[aµ, φ, φ∗] =
∑

m,n

1

m!(n!)2

∫ m
∏

k=1

n
∏

l=1

dDxkd
Dyld

DzlΓ
µ1...µm

(m,n) [xk; yl; zl]aµk
(xk)φ

∗(yl)φ(zl).

(3.5)

The computation of the wis, i = 1, . . . , 4, in eq. (3.4) is a standard exercise in intro-

ductory courses to renormalization theory, so we will just quote the result:

w1 = − e2

48π2ε
, w2 =

e2

16π2ε
(3−ξ), w3 = −e2ξ − λ

16π2ε
, w4 =

1

32π2ε

[

24
e4

λ
−4e2ξ+5λ

]

. (3.6)

The computation of the zis, i = 1, . . . , 9, in eq. (3.4) is, though, a very lengthy and involved

computation since the pole part of a large number of topologically inequivalent diagrams –

94 altogether– with a single noncommutative vertex –which is in general a long expression–

must be worked out. It turns out that to obtain all the zis one must evaluate the pole

part of the one-loop contributions to Γµνρ
(3,0), Γµ

(1,1) and Γµ
(1,2) that are linear in θµν –see

eq. (3.5) for notation. Let us next display the values of these one-loop pole parts that we

shall denote, respectively, by Γ
(1)µνρ
(3,0) [p1, p2,−p1 − p2]

one−loop
pole , Γ

(1)µ
(1,1)[p1 − p2; p1, p2]

one−loop
pole

and Γ
(1)µ
(1,2)[p1 + p3 − p2 − p4; p1, p2, p3, p4]

one−loop
pole :

The aaa 1PI Green function Γµνρ
(3,0). There are 4 topologically inequivalent diagrams

–see figure 2 in the appendix– contributing to the pole part of this Green function at first

order in hθµν , and they lead to the following result:

Γ
(1)µνρ
(3,0) [p1, p2,−p1 − p2]

one−loop
pole = − e2

48π2ε
Γ

t(1)µνρ
(3,0) [p1, p2,−p1 − p2], (3.7)

where Γ
t(1)µνρ
(3,0) is the tree-level contribution given in eq. (3.2) coming from the contributions

t1 and t2 to Sclass –see eqs. (2.4) and (2.6).

The aφ∗φ 1PI Green function Γµ
(1,1)

. The pole parts of the 11 topologically inequivalent

diagrams in figure 3 of the appendix are to be computed, to obtain the following answer:

Γ
(1)µ
(1,1)[p1 − p2; p1, p2]

one−loop
pole = Γ

t(1) µ
(1,1) [∆3,∆4,∆5,∆6,∆7,∆9; p1 − p2; p1, p2], (3.8)

where Γ
t(1) µ
(1,1) [∆3,∆4,∆5,∆6,∆7,∆9; r; p, q] is obtained from Γ

t(1) µ
(1,1) [r; p, q] in eq. (3.2) by

replacing Ci with ∆i, i = 3, 4, 5, 6, 7 and 9, where

∆3 = e2

192π2ε
[11+26C4−13C5−26C6+13C7−4C3(1+3ξ)−λ(−12C3+6C4−3C5−6C6

+ 2C7)]

∆4 = e2

32π2ε
[2 − C5 + 2C7 + 2C4(4 − ξ)]

∆5 = e2

16π2ε
[2(1 + C7) + C5(3 − ξ)]

∆6 = e2

32π2ε [−1 + C7 + 2C6(4 − ξ)]

∆7 = e2

16π2ε
[4 + C7(7 − ξ)]

∆9 = 1
32π2ε

[8C8+e2(−8C3+4C4−2C5−2C6+2C7+2C9(2−ξ))−λ(−4C6+C7−2C9)].

(3.9)

The constants Ci, i = 3, 4, 5, 6, 7 and 9, are defined in eq. (2.7).
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The aφ∗φφ∗φ 1PI Green function Γµ
(1,2). Let Γ

t(1)µ
(1,2) [∆8; t; p, q; r, s] denote

Γ
t(1)µ
(1,2) [t; p, q; r, s] in eq. (3.2), once C8 is replaced with ∆8. Then, the computation of

the pole part of the 79 topologically inequivalent diagrams in figure 4 of the appendix

leads to the following equality:

Γ
(1)µ
(1,2)[p1+p3−p2−p4; p1, p2; p3, p4]

one−pole
pole = Γ

t(1)µ
(1,2) [∆8; p1+p3−p2−p4; p1, p2; p3, p4], (3.10)

where

∆8 = 1
256π2ε

[−4e4(−12 + 4C3 − 2C4 + C5 + 26C6 − 8C7) + 5λ2(4C6 − C7)

− 8e2λ(8C3 − 4C4 + 2C5 + C6 − C7) + 32e2C8(2 − ξ) + 80λC8].
(3.11)

Taking into account eqs. (3.7), (3.8) and (3.10), one concludes that the zis, i = 1, . . . , 9,

in eq. (3.4) are given by the following equalities:

z1 = z2 = − e2

48π2ε
, zi = ∆i, ∀ i = 3 . . . 9, (3.12)

where the ∆is, i = 3 . . . 9, are given in eqs. (3.9) and (3.11).

3.2 One-loop renormalization

Let us assume that the fields and parameters of the action in eq. (3.1) are the bare fields

and parameters of the model. Then, as usual, we shall say that the model is one-loop mul-

tiplicatively renormalizable at first order in hθµν , if the free coefficients of the counterterm

action obtained by introducing the following renormalizations of the fields and parameters

of the action in eq. (3.1)

aµ = Z
1/2
a aR

µ φ = Z
1/2
φ φR e = Zee

R

µ = Z
1/2
µ µR λ = ZλλR ξ = Zξξ

R

θ = Zθθ
R κi = κR

i + δκi, i = 1, 2, 3, 4 Reκ5 = ReκR
5 + δReκ5

Imκ5 = ImκR
5 + δImκ5

(3.13)

can be chosen to cancel the UV divergences of the 1PI functional given in

eqs. (3.3), (3.4), (3.6) and (3.12).

Let δZa = Za − 1, δZφ = Zφ − 1, δZe = Ze − 1, δZµ = Zµ − 1, δZλ = Zλ − 1,

δZξ = Zξ − 1 and δZθ = Zθ − 1. Then, the multiplicative renormalization in eq. (3.13),

when applied to the action in eq. (3.1), yields the following one-loop counterterm action

up to first order in hθµν :

Sct = S
(0)
ct + hS

(1)
ct ,

where

S
(0)
ct =

∫

d4x − 1
4δZafµνf

µν + δZφ(∂µφ)∗∂µφ − (δZφ + δZµ)µ2φ∗φ

− ie(δZφ + δZe + 1
2δZa)∂µφ∗aµφ + ie(δZφ + δZe + 1

2δZa)φ
∗aµ∂µφ

+ e2(2 δZe + δZa + δZφ)φ∗φaµaµ − λ
4 (δZλ + 2δZφ)(φ∗φ)2 − 1

2ξ (δZa − δZξ)(∂µaµ)2,

S
(1)
ct =

∫

d4x e
8 (δZθ + δZa)t1 − e

2(δZθ + δZa)t2 + e
∑7

i=3[δCi + Ci(δZθ + δZφ)]ti
+ e[δC8 + C8(δZθ + 2δZφ)]t8 + eµ2[δC9 + C9(δZθ + δZµ + δZφ)]t9.

(3.14)
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In the previous equation the fields aµ and φ and the parameters µ2, e, λ and κi, i = 1, . . . 4

are, respectively, the renormalized fields and parameters of eq. (3.13). We have suppressed

the superscript “R” to make the notation simpler. To simplify the expression for S
(1)
ct , the

identity δZa = −2δZe, which is a consequence of the BRST invariance of the theory, has

been used. Notice that as a consequence of the identities in eq. (2.7) the δCis in eq. (3.14)

are defined by following equalities:

δC3 = −δReκ5 + iδImκ5 − i
2 (δκ2 + δκ4) + 1

2 δκ3 − iδκ1 δC4 = 2iδImκ5 − 2iδκ1

δC5 = 2i(δκ2 + δκ4) δC6 = 2δReκ5

δC7 = 0 δC9 = −2δReκ5

δC8 = 1
2(2e2κ3δZe + e2δκ3) − λδZλ(Reκ5 − 1

16) − λδReκ5.

(3.15)

Of course, δZa, δZφ, δZe, δZµ, δZλ and δZξ are the same as in the ordinary model,

and in the MS scheme they read

δZa = e2

48π2ε = −2δZe = δZξ, δZφ = − e2(3−ξ)
16π2ε ,

δZµ = 3e2−λ
16π2ε δZλ = − 1

32π2ε

[

24e4

λ − 12e2 + 5λ
]

.
(3.16)

Next, in the MS scheme, δZθ and δCi, i = 3, . . . , 9, of S
(1)
ct in eq. (3.14) must be chosen –

were it possible– so that the sum Γ(1)[aµ, φ, φ∗]one−loop
pole +S

(1)
ct vanishes. Γ(1)[aµ, φ, φ∗]one−loop

pole

is given in eq. (3.4) and the values of its coefficients –the zis– are summarized in eq. (3.12).

We thus conclude that δZθ must satisfy the following equalities:

−z1 = δZθ + δZa, −z2 = δZθ + δZa, (3.17)

whereas for δCi, i = 3, . . . , 9 the following set of equations must hold:

−zi = δCi + Ci(δZθ + δZφ), i = 3, 4, 5, 6, 7

−z8 = δC8 + C8(δZθ + 2 δZφ),

−z9 = δC9 + C9(δZθ + δZµ + δZφ).

(3.18)

Taking into account eqs. (3.12) and (3.16), one concludes that the two equalities in

eq. (3.17) hold if, and only if,
δZθ = 0. (3.19)

This equation leads to the conclusion that θµν is not renormalized at the one-loop level in

the MS scheme of dimensional regularization.

That the two equalities in eq. (3.17) hold is a necessary and sufficient condition for the

gauge sector of our model –no matter fields in the external legs of the Green functions– to

be multiplicatively renormalizable at one-loop and at first order in θµν . BRST invariance

does not imply that eq. (3.17) must be verified, since in our case the most general BRST

invariant contribution involving only gauge fields reads up to first order in hθµν :
∫

d4x − 1

4
w1 fµνf

µν + h
e

8
z2 t1 − h

e

2
z3 t2, (3.20)

Mark that the real numbers w1, z2 and z3 are arbitrary. Now, only if z2 = z3, it is possible

to renormalize the θµν dependent part of the functional in the previous equation by means
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of the renormalization in eq. (3.13). Of course, we have shown by explicit computation

that for our model z2 = z3. But there is more: we have obtained not only that z2 = z3,

but that z2 = z3 = w1. The latter train of equalities has nothing to do with the gauge

sector of the model being renormalizable at one loop, but with the fact that θµν is not

renormalized at one-loop. We do not believe –following the author of ref. [17]– that this

situation –that z2 = z3 = w1– is an accident, but that it perhaps hints at the existence of

an as yet unknown symmetry that mixes the three monomials in eq. (3.20). This symmetry

must depend on θµν , for it must relate monomials with different powers in θµν . Notice that

what we have obtained is that the renormalizability of the gauge sector of the model at

one-loop and first order in θµν is governed by the renormalization of the coupling constant

e –recall that BRST invariance implies δZa = −2δZe.

Now, the matter sector of the model in the symmetric phase will be multiplicatively

renormalizable –i.e by means of the renormalization transformations in eq. (3.13)– if, and

only if, there exist δκi, i = 1, . . . , 4, Reδκ5 and Imδκ5 such that the set of eqs. (3.18) holds

for them. Taking into account the values of the zis on the l.h.s of eq. (3.18) that are given

in eqs. (3.12), (3.9) and (3.11), using the definitions of the δCis, i = 1, . . . , 9, provided in

eq. (3.15), and recalling that the renormalized Cis, i = 1, . . . , 9, are defined in terms of

the renormalized κi, i = 1, . . . , 5, by the identities in eq. (2.7) and that the values of the

δZs are those in eqs. (3.16) and (3.19), one concludes, upon substitution of the previous

results, that there is a unique set of parameters δκi, i = 1, . . . 5, that solves the system of

equations constituted by the first five –i = 3, 4, 5, 6 and 7– equalities in eq. (3.18). This set

of parameters reads

δκ1 = δImκ5 −
e2

32π2ε
(2κ1 + κ2 − 2Imκ5 + κ4)

δκ2 = −δκ4 (3.21)

δκ3 =
1

192π2ε
[e2(6 + 40κ3) − λ(1 + 12κ3)]

δReκ5 =
e2

128π2ε
(5 − 8Reκ5).

And yet, the full system of equations has no solution for µ2 6= 0, as the last equation

–the equation with z9 on the l.h.s– is not satisfied by the δκis, i = 1, . . . , 5 in eq. (3.21).

Indeed, upon substitution of those values in this last equation one obtains the constraint

6e2 − λ = 0. Notice that this constraint is not even renormalization group invariant, so it

cannot be imposed in a renormalization group invariant way, precluding the implementation

of the reduction-of-the-couplings mechanism of ref. [30] to dispose of the unwanted UV

divergences. We thus conclude that the matter sector of the theory is not multiplicatively

renormalizable if the scalar field is massive. If µ2 = 0, the last equality of eq. (3.18) need

not be satisfied since, now, terms of the type µ2t9 occur neither in the classical action

nor in Γ(1)[aµ, φ, φ∗]one−loop
pole –see eq. (3.4). Unfortunately, the equation −z8 = δC8 +

C8(δZθ + 2δZφ) is not satisfied by the parameters given in eq. (3.21), for its substitution

in the latter equation leads to the constraint 204e2 − 76e2λ + 15λ2 = 0. Remarkably,

all dependence on the arbitrary parameters of the Seiberg-Witten map disappears, but

the previous constraint is, of course, not valid for arbitrary e and λ. The constraint is

not even renormalization group invariant. In summary, the matter sector of our model is

– 9 –
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not multiplicatively renormalizable in the phase with no spontaneous symmetry breaking

whatever the value of the mass.

We shall next address the issue of the non-multiplicative renormalizability of the model.

We shall show that turning non-multiplicative –but local at every order in θµν– the rela-

tionship between bare and renormalized fields will be of no avail in making the model

renormalizable. Let us assume that the bare fields and renormalized fields are not related

as in eq. (3.13), but as follows

aµ = aR
µ+

1

2
δZa aR

µ+hδZµ[aR
µ , φR, φR ∗, ∂, θµν ]; φ = φR+

1

2
δZφ φR+hδZ[aR

µ , φR, φR ∗, ∂µ, θµν ],

where

δZµ =x1θµ
αaαφ∗φ+x2θµ

αaα(φφ+φ∗φ∗)+ix3θµ
αaα(φφ−φ∗φ∗)+x4θµ

α(∂αφφ+∂αφ∗φ∗)

+ix5θµ
α(∂αφφ−∂αφ∗φ∗)+x6θµ

αaαaρa
ρ+x7θµ

αaα∂ρa
ρ+x8θµ

α∂ρaαaρ+x9θµ
α∂2aα

+x10θµ
α∂αaρa

ρ+x11µ
2θµ

αaα+µx12θµ
α∂α(φ+φ∗)+iµx13θµ

α∂α(φ−φ∗)

+ µx14θµ
αaα(φ + φ∗) + iµx15θµ

αaα(φ − φ∗) + x16θ
αβ∂αaβaµ + x17θ

αβ∂µaαaβ

+ x18θ
αβ∂αaµaβ,

δZ = z1θ
αβ∂αaβφ∗ + z2θ

αβaα∂βφ + z3θ
αβaα∂βφ∗ + µz4θ

αβfαβ,

(3.22)

with real xis and complex zis. The previous δZµ and δZ are the most general polynomials

of mass dimension one that are linear in θµν and do not contain any contribution that can

be removed by modifying the value of the free parameters of the Seiberg-Witten map in

eq. (2.2).

δZµ and δZ in eq. (3.22) yield the following sum of new counterterms

S
(1)new
ct =

∫

d4x [δZµ∂ρf
ρµ−iδZµ(Dµφ∗φ−φ∗Dµφ)−δZ∗D2φ−δZD2φ∗−µ2(φ∗δZ+φδZ∗)

− λ
2 (δZ∗φ∗φ2 + δZφφ∗2)].

Now, S
(1)new
ct must be invariant under the BRST transformations saµ = ∂µc, sφ =

iecφ,sφ∗ = −iecφ∗. A lengthy computation shows that sSnew
ct = 0 if, and only if, xi = 0,

∀i, and zi = 0, ∀i.

4. The model in the phase with spontaneously broken symmetry

In the case µ2 = −m2 < 0, λ > 0, the classical Poincaré-invariant vacuum of the theory

with the action in eq. (2.1) is given by φ∗φ = 2m2

λ . To perform perturbative calculations

in the quantum theory we have to expand the fields around a given vacuum configuration.

We choose the following parametrization:

φ =
1√
2
(v + φ1 + iφ2),

with v =
√

4m2

λ at the classical level and with φ1 and φ2 being real fields that vanish in

the classical vacuum.
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Since we are interested in the renormalization properties of the model, we shall consider

the following family of Rξ-gauges to quantize it:

Sgf =

∫

d4x
1

2
ξb2 + b(∂µaµ + ξρφ2), Sgh =

∫

d4x c(−∂2 − ξρe(v + φ1))c. (4.1)

b is an auxiliary real field and c and c̄ are the ghost and anti-ghost fields, respectively.

Recall that it is most useful to choose ρ = ev at the tree-level.

Now, up to first order in hθµν , the action that we shall use to carry out a path integral

quantization of the theory reads

SSSB = S(0)[φ = 1/
√

2(v + φ1 + iφ2), aµ, µ2 = −m2, λ] + Sgf + Sgh

+ hS(1)[φ = 1/
√

2(v + φ1 + iφ2), aµ, µ2 = −m2, λ, θµν ],
(4.2)

where S(0) and S(1) have been defined in eqs. (2.5) and (2.6), respectively, and Sgf and

Sgh are given in eq. (4.1). Upon integrating over the auxiliary field b, the previous action

leads to the set of Feynman rules depicted in figure 5 of the appendix. The following

definitions are needed to turn the Feynman rules into mathematical expressions –notice

that Γ̃
t(i) µ1,µ2,...,µm

(m,n,p,q) [momenta], i = 0, 1, denotes a tree-level vertex with m fields aµ, n fields

φ1, p fields φ2 and q pairs, (c, c̄), of ghost-anti-ghost fields:

Propagators

aµ −→ Gµν(k) = −i
k2−(ev)2+iε

[

gµν − (1 − ξ) kµkν

k2−ξ(ev)2

]

φ1 −→ G1(k) = i
k2−2m2+iε

φ2 −→ G2(k) = i
k2−ξ(ev)2+iε

c −→ G(k) = i
k2−ξ(ev)2+iε

Ordinary vertices

Γ̃
t(0) µ
(1,1,1,0)

[r; p; q] = e(pµ − qµ) Γ̃
t(0) µν
(2,1,0,0)

[p, q; r] = 2ie2vgµν Γ̃
t(0)
(0,3,0,0)

[p, q, r] = −3
2 iλv

Γ̃
t(0)
(0,1,2,0)[p; q, r] = −1

2 iλv Γ̃
t(0)
(0,1,0,2)[p; q, r] = −iξe2v Γ̃

t(0)µν
(2,2,0,0)[p, q; r, s] = 2ie2gµν

Γ̃
t(0)µν
(2,0,2,0)[p, q; r, s] = 2ie2gµν Γ̃

t(0)
(0,4,0,0)[p, q, r, s] = −3

2 iλ Γ̃
t(0)
(0,0,4,0)[p, q, r, s] = −3

2 iλ

Γ̃
t(0)
(0,2,2,0)[p, q; r, s] = −1

2 iλ

Noncommutative vertices

Γ̃
t(1)µ
(1,1,0,0)[r; q] =

v

2
(Γ

t(1)µ
(1,1) [r; 0, q] + Γ

t(1)µ
(1,1) [r;−q, 0]) +

v3

4
Γ

t(1)µ
(1,2) [r; 0, q; 0, 0]

Γ̃
t(1)µ
(1,0,1,0)[r; q] =

−iv

2
(Γ

t(1)µ
(1,1) [r;−q, 0] − Γ

t(1)µ
(1,1) [r; 0, q])

Γ̃
t(1)µν
(2,0,0,0)[r, s] =

v2

2
Γ

t(1)µν
(2,1) [r, s; 0, 0]

Γ̃
t(1)µ
(1,2,0,0)[r; p, q] =

1

2
(Γ

t(1)µ
(1,1) [r;−p, q] + Γ

t(1)µ
(1,1) [r;−q, p]) +

3

4
v2Γ

t(1)µ
(1,2) [r; 0, p; 0, q]

Γ̃
t(1)µ
(1,0,2,0)[r; p, q] =

1

2
(Γ

t(1)µ
(1,1) [r;−p, q] + Γ

t(1)µ
(1,1) [r;−q, p]) +

1

4
v2Γ

t(1)µ
(1,2) [r; 0, p; 0, q]
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Γ̃
t(1)µ
(1,1,1,0)[r; q; p] = − i

2
(Γ

t(1)µ
(1,1) [r;−p, q] − Γ

t(1)µ
(1,1) [r;−q, p])

Γ̃
t(1)µνη
(3,0,0,0)[r, s, t] = Γ

t(1)µνη
(3,0) [r, s, t] +

v2

2
Γ

t(1)µνη
(3,1) [r, s, t; 0, 0]

Γ̃
t(1)µν
(2,1,0,0)[r, s; q] =

v

2
(Γ

t(1)µν
(2,1) [r, s; 0, q] + Γ

t(1)µν
(2,1) [r, s;−q, 0])

Γ̃
t(1)µν
(2,0,1,0)[r, s; q] =

−iv

2
(Γ

t(1)µν
(2,1) [r, s;−q, 0] − Γ

t(1)µν
(2,1) [r, s; 0, q])

Γ̃
t(1)µν
(2,2,0,0)[r, s; p, q] =

1

2
(Γ

t(1)µν
(2,1) [r, s;−p, q] + Γ

t(1)µν
(2,1) [r, s;−q, p])

Γ̃
t(1)µν
(2,0,2,0)

[r, s; p, q] =
1

2
(Γ

t(1)µν
(2,1)

[r, s;−p, q] + Γ
t(1)µν
(2,1)

[r, s;−q, p])

Γ̃
t(1)µν
(2,1,1,0)[r, s; q, p] =

−i

2
(Γ

t(1)µν
(2,1) [r, s;−p, q] − Γ

t(1)µν
(2,1) [r, s;−q, p])

Γ̃
t(1)µνρ
(3,1,0,0)[r, s, t; q] = vΓ

t(1)µνρ
(3,1) [r, s, t; 0, q]

Γ̃
t(1)µ
(1,3,0,0)[s; p, q, r] =

3v

2
Γ

t(1)µ
(1,2) [s; 0, p;−q, r]

Γ̃
t(1)µ
(1,1,2,0)[s; p; q, r] =

v

2
Γ

t(1)µ
(1,2) [s; 0, p;−q, r]

Γ̃
t(1)µνρ
(3,2,0,0)[r, s, t; p, q] = Γ

t(1)µνρ
(3,1) [r, s, t;−p, q]

Γ̃
t(1)µνρ
(3,0,2,0)[r, s, t; p, q] = Γ

t(1)µνρ
(3,1) [r, s, t;−p, q]

Γ̃
t(1)µ
(1,4,0,0)[t; p, q, r, s] =

3

2
Γ

t(1)µ
(1,2) [t;−p, q;−r, s]

Γ̃
t(1)µ
(1,0,4,0)[t; p, q, r, s] =

3

2
Γ

t(1)µ
(1,2) [t;−p, q;−r, s]

Γ̃
t(1)µ
(1,2,2,0)[t; p, q; r, s] =

1

2
Γ

t(1)µ
(1,2) [t;−p, q;−r, s]

with the Γts as given in eq. (3.2), but evaluated at µ2 = −m2. All momenta are taken as

positive when coming out of the vertex.

Before discussing the renormalizablity at first order in θµν of the model in the phase

with spontaneous symmetry breaking, we shall just remark the obvious fact that the one-

loop UV divergent contributions that do not depend on θµν –i.e., the one-loop UV di-

vergent contributions of the ordinary model– can be multiplicatively renormalized –see

refs. [31, 32, 23] for further details– by expressing the bare fields and parameters –denoted

by the superscript 0– in terms of the renormalized fields and parameters –labelled with the

superscript “R”– as follows:

a0
µ = Z

1/2
a aR

µ φ0
1 = Z

1/2
φ1

φR
1 φ0

2 = Z
1/2
φ2

φR
2

v0 = Z
1/2
φ1

(vR + δv) e0 = Zee
R m0 = Z

1/2
m mR

λ0 = ZλλR.

(4.3)

In the MS scheme of dimensional regularization –recall that D = 4 + 2ε– one has that

Zφ1
= Zφ2

= Zφ, with Zφ given in eq. (3.16), and that Za, Ze, Zm = Zµ, Zλ take the same
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values as in the phase with no spontaneous symmetry breaking –see eq. (3.16)–, if

δv

vR
=

−e2ξ

16π2ε
.

4.1 One-loop renormalizability of the gauge sector

In dimensional regularization, the pole part of any UV divergent one-loop Feynman inte-

gral, IF , is a polynomial on the external momenta of the integral and the masses of the

free internal propagators, if it is besides IR finite by power counting at non-exceptional

momenta. Further, if the Feynman integral, say IF (m = 0), that is obtained from IF by

setting to zero all the masses in the denominators is still IR finite by power counting at

non-exceptional momenta, there happens that the pole part of IF that does not depend on

the masses is given by the pole part of the integral IF (m = 0).

For the remaining of this subsection, to render both the computations and the sub-

sequent analysis as simple as possible, we shall send to zero the gauge parameter, ξ, that

occurs in the Feynman rules of the model –these rules are given in figure 5 of the appendix.

This way the interaction vertex involving the ghost fields vanishes. Let Γ(1)[aµ]SSB, one−loop
pole

denote the one-loop pole part of the 1PI functional of the gauge sector of the model at first

order in θµν –by definition Γ(1)[aµ]SSB, one−loop
pole only depends on aµ. Taking into account

the arguments presented in the previous paragraph, one concludes that the contributions

to Γ(1)[aµ]SSB, one−loop
pole that do not depend on any dimensionful parameter –that we shall

denote with M– are equal to those in the massless theory, which were obtained in the

previous section:

Γ(1)[aµ]SSB, one−loop
pole = Γ(1)[aµ]M−independent

pole + Γ(1)[aµ]M−dependent
pole ,

Γ(1)[aµ]M−independent
pole =

∫

d4x
(

e
8 z1 t1 − e

2 z2 t2
)

.
(4.4)

t1 and t2 were defined in eq. (2.3), and z1 and z2 were given in eq. (3.12). Γ(1)[aµ]M−dependent
pole

–the M−dependent contribution to Γ(1)[aµ]SSB, one−loop
pole – can be obtained from the pole of

the M -dependent part of the one-loop 1PI diagrams contributing to < 0|T{aµ(x)aν(y)}|0 >

and < 0|T{aµ(x)aν(y)aρ(z)}|0 >. The topologically inequivalent diagrams that contribute

at first first order in θµν are given in figures 6 and 7 of the appendix. It turns out that

Γ(1)[aµ]M−dependent
pole = (ev)2

2 θαβ
∫

d4x
(

i∆
(ξ=0)
4 aρ∂

ρfαβ + i∆
(ξ=0)
5 aα∂ρfβ

ρ+

e∆
(ξ=0)
6 aρa

ρfαβ + e∆
(ξ=0)
7 aαaρfβ

ρ
)

,

(4.5)

where ∆
(ξ=0)
4 , ∆

(ξ=0)
5 , ∆

(ξ=0)
6 and ∆

(ξ=0)
7 are obtained by substituting ξ = 0 in ∆4, ∆5, ∆6

and ∆7, as given in eq. (3.9), respectively.

Let us now show that the UV divergences in eqs. (4.4) and eq. (4.5) can be removed by

renormalizing the parameters and fields as in eq. (4.3), if we also introduce the following

renormalization of the parameters κi, i = 1, . . . , 5, of the Seiberg-Witten map in eq. (2.2):

κ0
i = κR

i + δκi, i = 1, 2, 3, 4, Reκ0
5 = ReκR

5 + δReκ5, Imκ0
5 = ImκR

5 + δImκ5. (4.6)
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For completeness one should also include the following renormalization of θµν : θ0µν =

Zθθ
R µν , but as we shall see the renormalization of the gauge sector implies Zθ = 1 at the

order at which we are working.

The substitution of the definitions in eqs. (4.3) and (4.6) in the action in eq. (4.2)

yields the following θµν−dependent counterterms involving only gauge fields:

S
(1)
ct [a] =

∫

d4x
[

e
8 (δZθ + δZa)t1 − e

2(δZθ + δZa)t2
]

+
(ev)2

2 θαβ
∫

d4x
{

i [δC4 + C4(δZθ + δZφ)] aρ∂
ρfαβ + i [δC5 + C5(δZθ + δZφ)] aα∂ρfβ

ρ
}

+
(ev)2

2 θαβ
∫

d4x
{

e [δC6 + C6(δZθ + δZφ)] aρa
ρfαβ + e [δC7 + C7(δZθ + δZφ)] aαaρfβ

ρ
}

,

where δC4, δC5, δC6 and δC7 were defined in eq. (3.15). In obtaining S
(1)
ct [aµ] above, we

have used the results: δZa = −2 δZe, δv(ξ=0) = 0.

It is plain that S
(1)
ct [aµ] defined in the MS scheme will cancel Γ(1)[aµ]SSB, one−loop

pole given

by eqs. (4.4) and (4.5) if, and only if,

e2

48π2ε
= δZθ + δZa,

−2∆
(ξ=0)
4 + ∆

(ξ=0)
5 = 2δC4 − δC5 + (2C4 − C5)(δZθ + δZφ),

−∆
(ξ=0)
i = δCi + Ci(δZθ + δZφ), i = 6, 7.

The previous set of equations is a subset of the set of equalities constituted by eq. (3.17)

and the first five equalities in eq (3.18) evaluated at ξ = 0. Hence, taking into account

that δZa and δZφ have the same value –given in eq. (3.16)– as in the phase with unbroken

symmetry but with the choice ξ = 0, one concludes first that δZθ = 0 and second that by

choosing δκi, i = 1, . . . , 5, as in eq. (3.21) –i.e., as in the symmetric phase– we will be able

to remove the UV divergences of the gauge sector at one-loop and at first order in θµν .

Let us show next that the one-loop renormalizability of the gauge sector of the model in

the phase with spontaneous symmetry breaking that we have just discussed is a consequence

of the two facts: i) that the U(1) symmetry is broken spontaneously so that the action in

eq. (4.2) is invariant under the following BRST transformations

saµ = ∂µc, sφ1 = −ec φ2, sφ2 = ec (φ1 + v), sc = 0, sc̄ = b, sb = 0

and ii) that the pole part of the one-loop 1PI functional that does not depend on v is

the same as in the massless model. To use as simple as possible linearized Slavnov-Taylor

equations, we shall still keep the gauge-fixing parameter ξ equal to 0. For this value of the

gauge-fixing parameter the ghost and anti-ghost fields decouple and, hence, they do not

contribute to the dimensionally regularized one-loop 1PI functional, ΓSSB, obtained from

our Feynman rules in figure 5 of the appendix. Since the gauge-fixing equation

δΓSSB

δb
= ξ b + ∂µaµ + ξρφ2

holds for the dimensionally regularized 1PI functional ΓSSB obtained from SSSB in eq. (4.2),

it turns out that in the gauge ξ = 0 the BRST invariance of the model implies that the

– 14 –
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one-loop contribution, Γone−loop
SSB , to ΓSSB is a function of φ = 1√

2
(v + φ1 + iφ2) and φ∗ that

must satisfy the following linearized Slavnov-Taylor equation

∫

dDx saµ(x)
δΓone−loop

SSB

δaµ(x)
+ sφ(x)

δΓone−loop
SSB

δφ(x)
+ sφ∗(x)

δΓone−loop
SSB

δφ∗(x)
= 0, (4.7)

where sφ = iecφ and sφ∗ = −iecφ∗. Eq. (4.7) leads to the conclusion that when ξ = 0

the pole part of the one-loop 1PI functional Γone−loop
SSB is given by the most general gauge

invariant local polynomial which is a functional of aµ, φ = 1√
2
(v+φ1 +iφ2) and φ∗ –it must

then be a local polynomial of fµν , φ and φ∗ and their gauge covariant derivatives. This

result and the analysis carried out in the first paragraph of this subsection implies that for

ξ = 0 the pole contribution to Γone−loop
SSB that is linear in θµν , say Γ

(1) one−loop
SSB , reads

Γ
(1) one−loop
SSB =

∫

d4x
e

8
z
(ξ=0)
1 t1 −

e

2
z
(ξ=0)
2 t2 +

8
∑

i=3

ez
(ξ=0)
i ti + er9(m, v)t9, (4.8)

where z
(ξ=0)
i , i = 1, . . . , 8, are given by the corresponding zi in eq. (3.12), upon substituting

ξ = 0, and ti, i = 1, . . . , 9, are defined as in eq. (2.3) but, now, with φ = 1√
2
(v + φ1 + iφ2).

We have thus shown that, for ξ = 0, Γ
(1) one−loop
SSB is a linear combination of the basis of gauge

invariant polynomials given in eq. (2.3) with coefficients such that, when m and v → 0, one

recovers the corresponding object for the massless Higgs-Kibble model at ξ = 0. Finally,

eq. (4.8) leads to Γ(1)[aµ]SSB, one−loop
pole as given by eqs. (4.4) and (4.5) upon imposing the

condition ξ = 0.

4.2 Non-renormalizability of the matter sector

Recall that we are in the phase with spontaneously broken gauge symmetry. Let

ΓM−independent
pole [aµ, φ1, φ2] denote the one-loop pole part of the 1PI functional of the model

that does not depend on any dimensionful parameter M for arbitrary ξ. Taking advantage

of the discussion carried out in the first paragraph of the previous subsection, one concludes

that ΓM−independent
pole [aµ, φ1, φ2] is equal to the corresponding object computed in the mass-

less model. We have shown in the previous section –section 3– that there is no local way of

renormalizing the fields and parameters of the model that removes the UV divergences of

the matter sector of the massless model. Hence, in the phase with spontaneous symmetry

breaking, there is also no local way of renormalizing the fields and parameters of the field

theory that substracts the M−independent UV divergent contributions occurring at the

one-loop level in the 1PI functional of the matter sector of the model.

5. Summary and conclusions

In this paper we have shown that the noncommutative U(1) Higgs-Kibble model formulated

within the enveloping-algebra formalism of refs. [1, 2] and [3] is non-renormalizable in

perturbation theory in the phase with unbroken gauge symmetry, whatever the value of

the mass of the complex scalar field. We have also shown that the same result holds when

the model is in the phase with spontaneous symmetry breaking. However, the gauge sector
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of the model is one-loop renormalizable at first order in θµν whatever the phase we look

at. This is quite surprising –although in keeping with the results obtained in refs. [17]

and [20] for other models– since gauge symmetry -either noncommutative or ordinary– and

power counting do not imply it –see discussion in the paragraph below eq. (3.19). This

renormalizability of the gauge sector of the model appears even more surprising if we take

into account that the matter sector is non-renormalizable and that all the one-loop UV

divergent diagrams that contribute to the gauge sector in the phase with unbroken gauge

symmetry –see figure 2– have only scalar particles propagating along the loop. The question

thus arises as to whether the renormalizability of the gauge sector of all the models studied

so far, hints at the existence of an as yet unveiled new symmetry of these gauge models

so that the part of the 1PI functional that only depends on the gauge fields is constrained

by it. The existence of such a symmetry will be of paramount importance in modifying

the matter sector so that it becomes renormalizable. Finally, the results presented in this

paper make us confident that all the one-loop UV divergent contributions to the gauge

sector of the noncommutative standard model coming from the matter sector of the model

are renormalizable, at least at first order in θµν . Hence, phenomenological results such as

those obtained in ref. [11] are robust due to the one-loop renormalizability of the gauge

sector.
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A. Feynman rules and Feynman diagrams with a noncommutative vertex

In this appendix we collect the figures with the Feynman rules and 1PI Feynman di-

agrams that are referred to in the main text of the paper. In figure 1, the Feynman

rules of our noncommutative Higgs-Kibble model in the phase with unbroken gauge

symmetry are given. The topologically inequivalent Feynman diagrams contributing to

Γ
(1)µνρ
(3,0) [p1, p2,−p1−p2]

one−loop
pole , Γ

(1)µ
(1,1)[p1−p2; p1, p2]

one−loop
pole and Γ

(1)µ
(1,2)[t; p, q; r, s]one−loop

pole are

depicted in figures 2, 3 and 4. The Feynman rules of our non-commutative Higgs-Kibble

model in the phase with spontaneous symmetry breaking are drawn in figure 5. Finally, in

figures 6 and 7, the topologically inequivalent Feynman diagrams contributing to the pole

part of the M -dependent part of the 1PI functions of the gauge field are shown.
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k

m n ↔ Gµν [k]
k ↔ G[k]

m

p q

r

↔ Γ
t(0) µ

(1,1) [r; p, q]

m n

p q

r s ↔ Γ
t(0) µν

(2,1) [r, s; p, q]

p q

r s ↔ Γ
t(0)
(0,2)[r, s; p, q]

m

p q

r

↔ Γ
t(1) µ

(1,1) [r; p, q]

n

h

m

p q

r

↔ Γ
t(1) µνη

(3,0) [p, q, r]

m n

p q

r s ↔ Γ
t(1) µν

(2,1) [r, s; p, q]

m

r

s

t

p q

n

r

↔ Γ
t(1) µνρ

(3,1) [r, s, t; p, q]

m

s
t

r

p q

↔ Γ
t(1) µ

(1,2) [t; p, q; r, s]

Figure 1: Feynman rules for the phase with unbroken symmetry.

Figure 2: Topologically inequivalent diagrams contributing to Γ
(1)µνρ

(3,0) [p1, p2,−p1 − p2]
one−loop
pole .

Figure 3: Topologically inequivalent diagrams contributing to Γ
(1)µ
(1,1)[p1 − p2; p1, p2]

one−loop
pole .
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Figure 4: Topologically inequivalent diagrams contributing to Γ
(1)µ
(1,2)[t; p, q; r, s]one−loop

pole .
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k

m n ↔ Gµν [k]
k

↔ G1[k]

k

↔ G2[k]
k ↔ G[k]

m

p q

r

↔ Γ̃
t(0) µ

(1,1,1,0)[r; p; q]

m n

r s

q

↔ Γ̃
t(0) µν

(2,1,0,0)[r, s; q]

p q

r

↔ Γ̃
t(0)
(0,3,0,0)[p, q, r]

p

q r

↔ Γ̃
t(0)
(0,1,2,0)[p; q, r]

p

rq

↔ Γ̃
t(0)
(0,1,0,2)[p; q, r]

m n

r s

p q

↔ Γ̃
t(0)µν

(2,2,0,0)[r, s; p, q]

m n

r s

p q

↔ Γ̃
t(0)µν

(2,0,2,0)[r, s; p, q]

p q

r s ↔ Γ̃
t(0)
(0,4,0,0)[p, q, r, s]

p q

r s ↔ Γ̃
t(0)
(0,0,4,0)[p, q, r, s]

p

qr

s ↔ Γ̃
t(0)
(0,2,2,0)[p, q; r, s]

m

r q ↔ Γ̃
t(1)µ
(1,1,0,0)[r; q]

m

r q ↔ Γ̃
t(1)µ
(1,0,1,0)[r; q]

m

r s
n

↔ Γ̃
t(1)µν

(2,0,0,0)[r, s]

m

p q

r

↔ Γ̃
t(1)µ
(1,2,0,0)[r; p, q]

m

p q

r

↔ Γ̃
t(1)µ
(1,0,2,0)[r; p, q]

m

p q

r

↔ Γ̃
t(1)µ
(1,1,1,0)[r; p; q]

n

h

m

p q

r

↔ Γ̃
t(1)µνη

(3,0,0,0)[p, q, r]

m n

r s

q

↔ Γ̃
t(1)µν

(2,1,0,0)[r, s; q]

m n

r s

q

↔ Γ̃
t(1)µν

(2,0,1,0)[r, s; q]

m n

r s

p q

↔ Γ̃
t(1)µν

(2,2,0,0)[r, s; p, q]

m n

r s

p q

↔ Γ̃
t(1)µν

(2,0,2,0)[r, s; p, q]

m n

r s

p q

↔ Γ̃
t(1)µν

(2,1,1,0)[r, s; q; p]

m

r

s

t

q

n

r

↔ Γ̃
t(1)µνρ

(3,1,0,0)[r, s, t; q]

m

r

s

p
q

↔ Γ̃
t(1)µ
(1,3,0,0)[s; p, q, r]

m

r

s

p
q

↔ Γ̃
t(1)µ
(1,1,2,0)[s; p; q, r]

m

r

s

t

p q

n

r

↔ Γ̃
t(1)µνρ

(3,2,0,0)[r, s, t; p, q]
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m

r

s

t

p q

n

r

↔ Γ̃
t(1)µνρ

(3,0,2,0)[r, s, t; p, q]

m

s
t

r

p q

↔ Γ̃
t(1)µ
(1,4,0,0)[t; p, q, r, s]

m

s
t

r

p q

↔ Γ̃
t(1)µ
(1,0,4,0)[t; p, q, r, s]

m

s

t

r

p

q

↔ Γ̃
t(1)µ
(1,2,2,0)[t; p, q; r, s]

Figure 5: Feynman rules for the phase with spontaneously broken symmetry

Figure 6: Topologically inequivalent diagrams contributing to the M−dependent part of the gauge

field two-point function.

Figure 7: Topologically inequivalent diagrams contributing to the M−dependent part of the

gauge field three-point function.
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